Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SGT1 is not required for plant LRR-RLK-mediated immunity.

Identifieur interne : 000059 ( Main/Exploration ); précédent : 000058; suivant : 000060

SGT1 is not required for plant LRR-RLK-mediated immunity.

Auteurs : Gang Yu [République populaire de Chine] ; Liu Xian [République populaire de Chine] ; Haiyan Zhuang [République populaire de Chine] ; Alberto P. Macho [République populaire de Chine]

Source :

RBID : pubmed:33174685

Abstract

Plant immune signalling activated by the perception of pathogen-associated molecular patterns (PAMPs) or effector proteins is mediated by pattern-recognition receptors (PRRs) and nucleotide-binding and leucine-rich repeat domain-containing receptors (NLRs), which often share cellular components and downstream responses. Many PRRs are leucine-rich repeat receptor-like kinases (LRR-RLKs), which mostly perceive proteinaceous PAMPs. The suppressor of the G2 allele of skp1 (SGT1) is a core immune regulator required for the activation of NLR-mediated immunity. In this work, we examined the requirement of SGT1 for immune responses mediated by several LRR-RLKs in both Nicotiana benthamiana and Arabidopsis. Using complementary genetic approaches, we found that SGT1 is not limiting for early PRR-dependent responses or antibacterial immunity. We therefore conclude that SGT1 does not play a significant role in bacterial PAMP-triggered immunity.

DOI: 10.1111/mpp.13012
PubMed: 33174685


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">SGT1 is not required for plant LRR-RLK-mediated immunity.</title>
<author>
<name sortKey="Yu, Gang" sort="Yu, Gang" uniqKey="Yu G" first="Gang" last="Yu">Gang Yu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xian, Liu" sort="Xian, Liu" uniqKey="Xian L" first="Liu" last="Xian">Liu Xian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhuang, Haiyan" sort="Zhuang, Haiyan" uniqKey="Zhuang H" first="Haiyan" last="Zhuang">Haiyan Zhuang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Macho, Alberto P" sort="Macho, Alberto P" uniqKey="Macho A" first="Alberto P" last="Macho">Alberto P. Macho</name>
<affiliation wicri:level="1">
<nlm:affiliation>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33174685</idno>
<idno type="pmid">33174685</idno>
<idno type="doi">10.1111/mpp.13012</idno>
<idno type="wicri:Area/Main/Corpus">000014</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000014</idno>
<idno type="wicri:Area/Main/Curation">000014</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000014</idno>
<idno type="wicri:Area/Main/Exploration">000014</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">SGT1 is not required for plant LRR-RLK-mediated immunity.</title>
<author>
<name sortKey="Yu, Gang" sort="Yu, Gang" uniqKey="Yu G" first="Gang" last="Yu">Gang Yu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xian, Liu" sort="Xian, Liu" uniqKey="Xian L" first="Liu" last="Xian">Liu Xian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhuang, Haiyan" sort="Zhuang, Haiyan" uniqKey="Zhuang H" first="Haiyan" last="Zhuang">Haiyan Zhuang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Macho, Alberto P" sort="Macho, Alberto P" uniqKey="Macho A" first="Alberto P" last="Macho">Alberto P. Macho</name>
<affiliation wicri:level="1">
<nlm:affiliation>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular plant pathology</title>
<idno type="eISSN">1364-3703</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant immune signalling activated by the perception of pathogen-associated molecular patterns (PAMPs) or effector proteins is mediated by pattern-recognition receptors (PRRs) and nucleotide-binding and leucine-rich repeat domain-containing receptors (NLRs), which often share cellular components and downstream responses. Many PRRs are leucine-rich repeat receptor-like kinases (LRR-RLKs), which mostly perceive proteinaceous PAMPs. The suppressor of the G2 allele of skp1 (SGT1) is a core immune regulator required for the activation of NLR-mediated immunity. In this work, we examined the requirement of SGT1 for immune responses mediated by several LRR-RLKs in both Nicotiana benthamiana and Arabidopsis. Using complementary genetic approaches, we found that SGT1 is not limiting for early PRR-dependent responses or antibacterial immunity. We therefore conclude that SGT1 does not play a significant role in bacterial PAMP-triggered immunity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33174685</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1364-3703</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Nov</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>Molecular plant pathology</Title>
<ISOAbbreviation>Mol Plant Pathol</ISOAbbreviation>
</Journal>
<ArticleTitle>SGT1 is not required for plant LRR-RLK-mediated immunity.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/mpp.13012</ELocationID>
<Abstract>
<AbstractText>Plant immune signalling activated by the perception of pathogen-associated molecular patterns (PAMPs) or effector proteins is mediated by pattern-recognition receptors (PRRs) and nucleotide-binding and leucine-rich repeat domain-containing receptors (NLRs), which often share cellular components and downstream responses. Many PRRs are leucine-rich repeat receptor-like kinases (LRR-RLKs), which mostly perceive proteinaceous PAMPs. The suppressor of the G2 allele of skp1 (SGT1) is a core immune regulator required for the activation of NLR-mediated immunity. In this work, we examined the requirement of SGT1 for immune responses mediated by several LRR-RLKs in both Nicotiana benthamiana and Arabidopsis. Using complementary genetic approaches, we found that SGT1 is not limiting for early PRR-dependent responses or antibacterial immunity. We therefore conclude that SGT1 does not play a significant role in bacterial PAMP-triggered immunity.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Gang</ForeName>
<Initials>G</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-6720-7490</Identifier>
<AffiliationInfo>
<Affiliation>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xian</LastName>
<ForeName>Liu</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-7496-2072</Identifier>
<AffiliationInfo>
<Affiliation>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University of Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhuang</LastName>
<ForeName>Haiyan</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Macho</LastName>
<ForeName>Alberto P</ForeName>
<Initials>AP</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-9935-8026</Identifier>
<AffiliationInfo>
<Affiliation>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>31571973</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>XDB27040204</GrantID>
<Agency>Chinese Academy of Sciences</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2016M600339</GrantID>
<Agency>China Postdoctoral Science Foundation</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>11</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Plant Pathol</MedlineTA>
<NlmUniqueID>100954969</NlmUniqueID>
<ISSNLinking>1364-3703</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">LRR-RLK</Keyword>
<Keyword MajorTopicYN="N">PAMP-triggered immunity</Keyword>
<Keyword MajorTopicYN="N">ROS burst</Keyword>
<Keyword MajorTopicYN="N">SGT1</Keyword>
<Keyword MajorTopicYN="N">virus-induced gene silencing</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>07</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>09</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>8</Hour>
<Minute>39</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33174685</ArticleId>
<ArticleId IdType="doi">10.1111/mpp.13012</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Austin, M.J., Muskett, P., Kahn, K., Feys, B.J., Jones, J.D.G. & Parker, J.E. (2002) Regulatory role of SGT1 in early R gene-mediated plant defenses. Science, 295, 2077-2080.</Citation>
</Reference>
<Reference>
<Citation>Azevedo, C., Betsuyaku, S., Peart, J., Takahashi, A., Noël, L., Sadanandom, A. et al. (2006) Role of SGT1 in resistance protein accumulation in plant immunity. The EMBO Journal, 25, 2007-2016.</Citation>
</Reference>
<Reference>
<Citation>Boller, T. & Felix, G. (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379-406.</Citation>
</Reference>
<Reference>
<Citation>Cook, D.E., Mesarich, C.H. & Thomma, B.P.H.J. (2015) Understanding plant immunity as a surveillance system to detect invasion. Annual Review of Phytopathology, 53, 541-563.</Citation>
</Reference>
<Reference>
<Citation>Gómez-Gómez, L. & Boller, T. (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular Cell, 5, 1003-1011.</Citation>
</Reference>
<Reference>
<Citation>Gómez-Gómez, L., Felix, G. & Boller, T. (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. The Plant Journal, 18, 277-284.</Citation>
</Reference>
<Reference>
<Citation>Holt, B.F., Belkhadir, Y. & Dangl, J.L. (2005) Antagonistic control of disease resistance protein stability in the plant immune system. Science, 309, 929-932.</Citation>
</Reference>
<Reference>
<Citation>Jones, J.D.G. & Dangl, J.L. (2006) The plant immune system. Nature, 444, 323-329.</Citation>
</Reference>
<Reference>
<Citation>Kadota, Y. & Shirasu, K. (2012) The HSP90 complex of plants. Biochimica et Biophysica Acta, 1823, 689-697.</Citation>
</Reference>
<Reference>
<Citation>Kadota, Y., Shirasu, K. & Guerois, R. (2010) NLR sensors meet at the SGT1-HSP90 crossroad. Trends in Biochemical Sciences, 35, 199-207.</Citation>
</Reference>
<Reference>
<Citation>Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T. & Felix, G. (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. The Plant Cell, 16, 3496-3507.</Citation>
</Reference>
<Reference>
<Citation>Lacombe, S., Rougon-Cardoso, A., Sherwood, E., Peeters, N., Dahlbeck, D., van Esse, H.P. et al. (2010) Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nature Biotechnology, 28, 365-369.</Citation>
</Reference>
<Reference>
<Citation>Lolle, S., Stevens, D. & Coaker, G. (2020) Plant NLR-triggered immunity: from receptor activation to downstream signaling. Current Opinion in Immunology, 62, 99-105.</Citation>
</Reference>
<Reference>
<Citation>Ngou, B.P.M., Ahn, H.-K., Ding, P. & Jones, J.D. (2020) Mutual potentiation of plant immunity by cell-surface and intracellular receptors. bioRxiv. https://doi.org/10.1101/2020.04.10.034173. [Preprint]</Citation>
</Reference>
<Reference>
<Citation>Noël, L.D., Cagna, G., Stuttmann, J., Wirthmüller, L., Betsuyaku, S., Witte, C.-P. et al. (2007) Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. The Plant Cell, 19, 4061-4076.</Citation>
</Reference>
<Reference>
<Citation>Peng, Y., van Wersch, R. & Zhang, Y. (2018) Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity. Molecular Plant-Microbe Interactions, 31, 403-409.</Citation>
</Reference>
<Reference>
<Citation>Ranf, S. (2017) Sensing of molecular patterns through cell surface immune receptors. Current Opinion Plant Biology, 238, 68-77.</Citation>
</Reference>
<Reference>
<Citation>Sang, Y., Yu, W., Zhuang, H., Wei, Y., Derevnina, L., Yu, G. et al. (2020) Intra-strain elicitation and suppression of plant immunity by Ralstonia solanacearum type-III effectors in Nicotiana benthamiana. Plant Communications, 100025.</Citation>
</Reference>
<Reference>
<Citation>Shirasu, K. (2009) The HSP90-SGT1 chaperone complex for NLR immune sensors. Annual Review of Plant Biology, 60, 139-164.</Citation>
</Reference>
<Reference>
<Citation>Uppalapati, S.R., Ishiga, Y., Ryu, C.-M., Ishiga, T., Wang, K., Noël, L.D. et al. (2011) SGT1 contributes to coronatine signaling and Pseudomonas syringae pv. tomato disease symptom development in tomato and Arabidopsis. New Phytologist, 189, 83-93.</Citation>
</Reference>
<Reference>
<Citation>Wang, K., Uppalapati, S.R., Zhu, X., Dinesh-Kumar, S.P. & Mysore, K.S. (2010) SGT1 positively regulates the process of plant cell death during both compatible and incompatible plant-pathogen interactions. Molecular Plant Pathology, 11, 597-611.</Citation>
</Reference>
<Reference>
<Citation>Wang, L., Albert, M., Einig, E., Fürst, U., Krust, D. & Felix, G. (2016) The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein. Nature Plants, 2, 16185.</Citation>
</Reference>
<Reference>
<Citation>Wei, Y., Caceres-Moreno, C., Jimenez-Gongora, T., Wang, K., Sang, Y., Lozano-Duran, R. et al. (2018) The Ralstonia solanacearum csp22 peptide, but not flagellin-derived peptides, is perceived by plants from the Solanaceae family. Plant Biotechnology Journal, 16, 1349-1362.</Citation>
</Reference>
<Reference>
<Citation>Wu, C.-H., Adachi, H., De la Concepcion, J.C., Castells-Graells, R., Nekrasov, V. & Kamoun, S. (2020) NRC4 gene cluster is not essential for bacterial flagellin-triggered immunity. Plant Physiology, 182, 455-459.</Citation>
</Reference>
<Reference>
<Citation>Yu, G., Xian, L., Sang, Y. & Macho, A.P. (2019) Cautionary notes on the use of Agrobacterium-mediated transient gene expression upon SGT1 silencing in Nicotiana benthamiana. New Phytologist, 222, 14-17.</Citation>
</Reference>
<Reference>
<Citation>Yu, G., Xian, L., Xue, H., Yu, W., Rufian, J.S., Sang, Y. et al. (2020) A bacterial effector protein prevents MAPK-mediated phosphorylation of SGT1 to suppress plant immunity. PLoS Pathogens, 16, e1008933.</Citation>
</Reference>
<Reference>
<Citation>Yuan, M., Jiang, Z., Bi, G., Nomura, K., Liu, M., He, S.Y. et al. (2020) Pattern-recognition receptors are required for NLR-mediated plant immunity. bioRxiv. https://doi.org/10.1101/2020.04.10.031294. [Preprint]</Citation>
</Reference>
<Reference>
<Citation>Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D.G., Boller, T. et al. (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell, 125, 749-760.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Yu, Gang" sort="Yu, Gang" uniqKey="Yu G" first="Gang" last="Yu">Gang Yu</name>
</noRegion>
<name sortKey="Macho, Alberto P" sort="Macho, Alberto P" uniqKey="Macho A" first="Alberto P" last="Macho">Alberto P. Macho</name>
<name sortKey="Xian, Liu" sort="Xian, Liu" uniqKey="Xian L" first="Liu" last="Xian">Liu Xian</name>
<name sortKey="Xian, Liu" sort="Xian, Liu" uniqKey="Xian L" first="Liu" last="Xian">Liu Xian</name>
<name sortKey="Zhuang, Haiyan" sort="Zhuang, Haiyan" uniqKey="Zhuang H" first="Haiyan" last="Zhuang">Haiyan Zhuang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000059 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000059 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33174685
   |texte=   SGT1 is not required for plant LRR-RLK-mediated immunity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33174685" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020